

Nanopore Sequencing Technology QITAN TECH

Dr. Pengcheng Du

Director of Product (Microbiology and Infections)

Principles of Nanopore Gene Sequencing

Nanopore Protein

The channel through which ions and nucleic acid molecules move under electrophoresis

Motor Protein

To control the speed of single-stranded nucleic acid passing through the nanopore

Flow Cell

To provide structural support for nanopores and an electrochemical environment for electrophoresis

Signal Processing Circuit

To provide biased voltage for electrophoresis and measure the current in each channel

Sequencing Software

To control the sequencer, analyze the current signal generated in the sequencing process, and obtain the sequencing results.

Core Technologies of Nanopore Sequencers

Focus on multidisciplinary, cutting-edge technologies to form a complete nanopore gene sequencing technology layout

Nanopore Protein

Continuous improvement of accuracy. It is expected that biochemical reagents that can approach the accuracy rate of nextgeneration sequencing will be launched next year

ASIC Chip

Independent intellectual property rights and localized production. The whole production process is independent and controllable. Medium-to-high throughput chips will realize simultaneous detection of thousands to tens of thousands of nanopores on a single chip

Biochip

Detachable biochip eliminates the need for sample accumulation. Ready for use and measurements. The consumables do not contain circuits, which can effectively reduce the cost of sequencing

Sequencing Algorithm

Self-developed algorithm model: highprecision + high-speed algorithm meets the different needs of accurate and efficient sequencing applications

Road to the Research and Development of Domestically-developed Nanopore Sequencers

2017.10

Completion of the principle prototype Establishment of the basic platform Completion of the engineering prototype Application of patents for the motor and flow cell

2018.12

Minimum viable product Application of patents for the nanopore protein

2022.06

QNome-3841hex Supports up to 6 flow cells operating independently

Nanopore strand sequencer by independent research and development

QNome-3841 The first commercial nanopore sequencer in China QNome-3841hex A benchtop nanopore sequencer

- Single read accuracy: 92% (V1 flow cell and kit) / 97% (V2 flow cell and kit)
- Consensus accuracy (70x): 99.99% (V1 flow cell and kit) / 99.999% (V2 flow cell and kit)
- Throughput: 3Gb/flow cell

K2 System

QITAN TECH

- > Nanopore Protein K2: allows for more uniform effective signal distribution, higher signal-to-noise ratio, and clearer current surges
- > A new generation of silicon-based biochips: more stable sequencing performance and data output

K2 System

- > Significantly improved Homopolymer resolution
- > The single molecule accuracy rate reached 97%, and the consensus accuracy rate (70×) reached Q50

Single molecule accuracy

Single molecule accuracy distribution

Complete Process of QNome Nanopore Sequencing

QITAN TECH

Academic papers using QNome nanopore sequencing platform

QITAN TECH

Let the information of life be at our fingertips

Genome level surveillance of pathogenic bacteria

Recently, *Klebsiella pneumoniae* isolates harboring *tmexCD-toprJ*, which encodes a transmissible resistance-nodulation-division family efflux pump, have been widely discovered in samples from patients, animals and food in China. These isolates displayed multidrug resistance (MDR), particularly to tigecycline, one of the 'last-line' antimicrobials to defense MDR Enterobacteriaceae.

QITAN TECH has collaborated with Peking University Third Hospital and Beijing Tsinghua Changgung Hospital and identified new *tmexCD-toprJ*positive *K. pneumoniae* subtypes using the QNome nanopore sequencing platform. The result has been published on the Lancet microbe, one of the top international journals focused on microbiology. Furthermore, the group has collaborated with Yangzhou University, to perform surveillance and research both in health care settings and food animal production industry.

Contents

We performed comprehensive research of the newly emerging *tmexCD-toprJ*-positive *K*. *pneumoniae* subtypes using nanopore sequencing technology, including genome level surveillance in the hospital.

Results

We found the first case of clonal dissemination of *tmexCD-toprJ*-positive *K*. *pneumoniae* between human and food animals using the QNome nanopore sequencing platform.

THE LANCET Microbe

RRESPONDENCE | ONLINE FIRST

Dissemination of the mobilised RND efflux pump gene cluster *tmexCD-toprJ* among *Klebsiella pneumoniae*Chao Liu • Jun Guo • Ming Lu • Ning Shen 🖾 • Pengcheng Du 🖾

n Access • Published: November 24, 2022 • DOI: https://doi.org/10.1016/52666-5247(22)00325-

Annotation and alignments of *tmexCD1-toprJ1* harboring plasmid from the clinical isolate together with published plasmid sequences.

 HS11286 (ST11, endgroup)

 WCH69P1011 (GCA, 00223815), human, China/Sichuan, 2016

 BS1131 (GCA, 10161398)

 S1131 (GCA, 10161398)

 PC1001 (GCA, 002238557), Bgc, Chanklengu, 2019

 FVD52 (GCA, 2025757), Bgc, Chanklengu, 2019

 FVD52 (GCA, 20256557), Bgc, Chanklengu, 2019

 FVD69 (GCA, 002236557), Bgc, Chanklengu, 2019

 FVD69 (GCA, 002265657), Bgc, Chanklengu, 2019

 FVD69 (GCA, 00236557), Bgc, Chanklengu, 2019

 FV139 (GCA, 002365518), human, China/Holt, 2019

 FV1417 (GCA, 20236518), human, China/Holt, 2019

 FV14187 (GCA, 20236518), human, China/Holt, 2019

 FV14187 (GCA, 50436518), human, China/Holt, 2019

 FV14187 (GCA, 504468), hicken, China/Holt, 2019

 FV14187 (GCA, 504468), hicken, China/Holt, 2019

 FV141

Phylogenetic relationship of the *tmexCD1-toprJ1*-positive ST726 *K. pneumoniae* isolates from the patient and food animals.

Genetic composition of *tmexCD1-toprJ1* harboring plasmid from the clinical isolate and the alignments with those from the four animal isolates.

Metagenomic Testing for Bloodstream Infections

Bloodstream infections are serious and life-threatening, and nanopore sequencing technology provides a faster and more accurate detection method for bloodstream infections

Test Content

Test Results

We took the peripheral blood sample of a clinical febrile patient whose traditional blood culture test was negative. By developing an efficient method to deplete the host nucleic acid, the QNome Nanopore Sequencing Platform was used for metagenomic sequencing to detect pathogens in the sample.

By using the metagenomic sequencing solution developed by Qitan Technology, the entire process comprising of host depletion, DNA extraction, and transposase-based DNA library construction can be completed within 4 hours. In the test results, the proportion of human (host) nucleic acid was reduced to 69%, and *Klebsiella aerogenes*, which accounted for 21%, were successfully detected.

Comparison of metagenomic sequencing results (proportion of the top 5 species)

QNome Nanopore	Sequencing Pla	atform	Nextseq550 (SE50) Sequencing Platform			
Data (Mbp)	Number of Reads	Human Nucleic Acid (%)	Data (Mbp)	Number of Reads	Human Nuc Acid (%)	
710	397,019	68.75	1231	24,633,277	62.6	
Species	Proportion (%)	Number of Reads	Species	Proportion (%)	Number o Reads	
Homo sapiens	68.75	216684	Homo sapiens	62.60	4296785	
Klebsiella aerogenes (G-)	21.42	67517	<mark>Klebsiella aerogenes (G-)</mark>	10.76	738851	
Klebsiella pneumoniae (G-)	2.84	8975	Klebsiella pneumoniae (G-)	3.18	218629	
Corynebacterium striata (G+)	1.84	5798	Corynebacterium striata (G+)	1.78	122623	
Propionibacterium acnes (G+)	1.44	4553	Propionibacterium acnes (G+)	1.72	118639	

Let the information of life be at our fingertips

QITAN TECH

Metagenomic Testing for Lower Respiratory Tract Infections

Lower respiratory tract infection is currently the main cause of death from infectious diseases in the world. Nanopore sequencing technology can provide very important etiological evidence for the diagnosis of clinical suspected infection cases

Test Content

We obtained the deep sputum samples of 5 patients with highly suspected lower respiratory tract infection. By developing and using an efficient method to deplete the host nucleic acid, the QNome nanopore sequencing platform was then used for metagenomic sequencing, and the sequencing results were compared with clinical culture results and next-generation sequencing results.

Test Results

By using the metagenomic sequencing solution developed by Qitan Technology, the entire process comprising of host depletion, DNA extraction, and transposase-based DNA library construction can be completed within 4 hours. Compared with clinical culture, the detection results are highly consistent and more pathogenic bacteria can be found (qPCR verification positive); compared with next-generation sequencing, the results are consistent, but the QNome nanopore sequencing platform is easier to operate and faster.

	Clinical Culture Results	Nanopore Sequencing Results			Next Generation Sequencing Results		
NO.	Species	Data/Number of Reads/Average Length	Species	Proportion (%)	Data/Number of Reads/Average Length	Species	Proportion (%)
1	Escherichia coli (G-) Klebsiella pneumoniae (G-)	485Mbp 0.47Mreads 1577	Homo sapiens Escherichia coli (G-) Klebsiella pneumoniae (G-)	48.90 28.41 11.89	1275Mbp 17Mreads 50	Homo sapiens Escherichia coli (G-) Klebsiella pneumoniae (G-)	92.75 1.56 0.82
2	Acinetobacter baumannii (G-)	701Mbp 0.58Mreads 1198	Pseudomonas aeruginosa (G-, positive by qPCR) Acinetobacter baumannii (G-) Homo sapiens	48.00 6.69 4.64	1653Mbp 22Mreads 50	Pseudomonas aeruginosa (G-, positive by qPCR) Homo sapiens Acinetobacter baumannii (G-)	56 29.15 3.64
3	Klebsiella pneumoniae (G-)	485Mbp 0.47Mreads 900	Klebsiella pneumoniae (G-) Homo sapiens	43.90 5.62	1658Mbp 22Mreads 50	Klebsiella pneumoniae (G-) Homo sapiens	44.78 19.09
4	Pseudomonas aeruginosa (G-)	554Mbp 0.46Mreads 1026	Homo sapiens Pseudomonas aeruginosa (G-)	37.08 17.34	1840Mbp 24Mreads 50	Homo sapiens Pseudomonas aeruginosa (G-)	76.52 10.83
5	Klebsiella aerogenes (G-)	533Mbp 0.43Mreads 969	Klebsiella aerogenes (G-) Homo sapiens	81.28 3.03	1784Mbp 23Mreads 50	Klebsiella aerogenes (G-) Homo sapiens	86.76 7.81

Nanopore sequencing has long reads, and more complete and detailed pathogen genome information can be obtained by spanning complex regions that are difficult to be achieved by short-read data.

Pathogen Study

Nanopore sequencing will comprehensively and accurately detect gene defects related to the occurrence and development of tumor in cancer patients, which is conducive to identifying the etiology and developing clinical management strategies.

Tumor

Detection

Nanopore sequencing is more conducive to detecting long segment structural variations and obtaining more accurate locations of breakpoint, assisting to locate pathogenic genes and develop clinical management strategies.

> Genetic Diseases Detection Public Health and

Epidemic Prevention

Nanopore sequencers can output sequencing results in real time and long reads sequencing is more conducive to obtaining complete and accurate pathogen detection results, which may go to the front line in major public health emergencies.

Reproductive Health, Basic Medicine Study, Pharmacogenomics, Research and Development of New Drugs

.....

Biodiversity Protection, Agricultural Breeding, Species Identification

.....

Environmental Monitoring and Protection

Nanopore sequencers is compact, portable, easy to operate and has long reads, and can be more conducive to go into different conditions on site and conduct real-time sequencing and identification of different biological samples, and facilitate the assessment of environment quality.

Disease Control of Animals and Plants

Nanopore sequencing is fast and has long reads, which can rapidly and accurately obtain pathogen genome information and facilitate timely adoption of appropriate and necessary prevention and control actions to prevent extensive economic losses caused by pathogen transmission.

Judicial Identification

Nanopore sequencing has long reads and flexible throughput, which may be simultaneously used to detect a variety of genetic markers commonly in forensic fields. The device is compact and easy to operate, which is more conducive to installation and use in primary laboratories. Non-medical Field

Medical Field

QITAN TECH

Thank you!

- www.qitantech.com
- <u>business@qitantech.com</u>
- **400-800-2038**

WeChat Official Accounts

WeChat Channels

Sina Microblog

Chengdu Headquarter: 3101,31/F T1,Raffles City Chengdu,No.3 Section 4,Renmin South Road, Wuhou District, Chengdu
Beijing R&D Center: 101-130,Building N2,Jinnovation Park,No.27,Middle Road, Jiancai Cheng, Haidian District, Beijing
Guangzhou R&D Center: Floor 8,Building B. Supporting Projects of Standard Property Unit 4,10 Huanyu 2nd Road, Guangzhou International Bio-Island, Huangpu District, Guangzhou
Nanjing R&D Center: Room 802/803,8th Floor, Building C, Photoelectric Science Park,No.6 Yuhe Road, Jiangbei New Area, Nanjing
Production Base: Building 6,Tianfu International Biotown,No.618 Fenghuang Road, Shuangliu District, Chengdu