Long-read amplicon sequencing for microbiome analysis

Yan Hui Postdoc Department of Food Science E-mail: huiyan@food.ku.dk

UNIVERSITY OF COPENHAGEN

Table of Contents

- Reference-based and reference-free strategies
 for lengthy amplicon analysis
- De novo OTU picking from long amplicons with LACA
- Use NART for long amplicon profiling by read classification
- Exercises

Reference-dependent vs Reference-free analysis

OUTPUT	RRF-dependent	REF-free
Representative sequences	No	Yes
Phylogenetic tree	No	Yes

Per-read query against a known database:

- Limited by database
- No OTUs

illumına

The consensus from built clusters:

• Clustering by identity, etc.

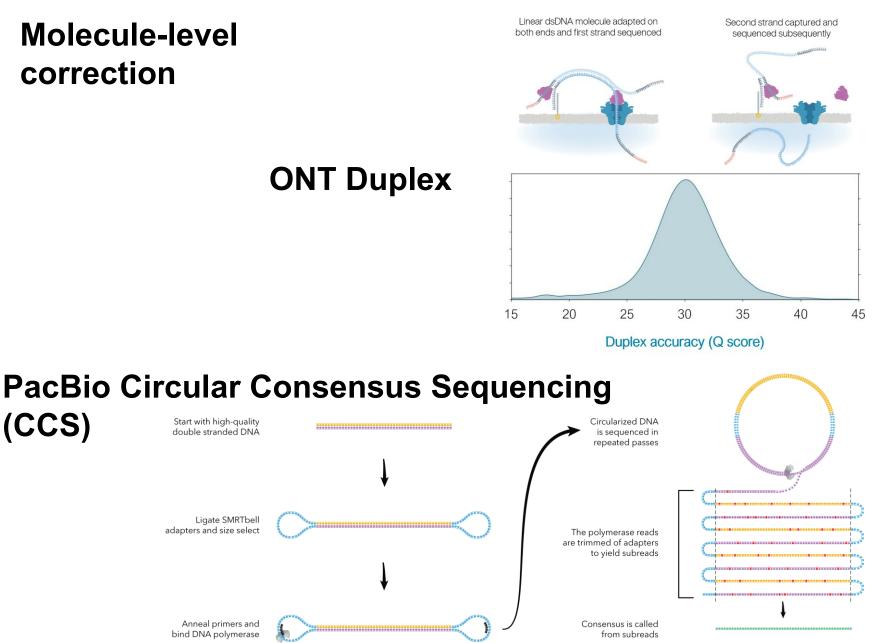
Sequencing errors

Phred quality scores Q are logarithmically related to the base-calling error probabilities P and defined as

$$Q = -10 \log_{10} P_{.}$$

Molecule-level correction

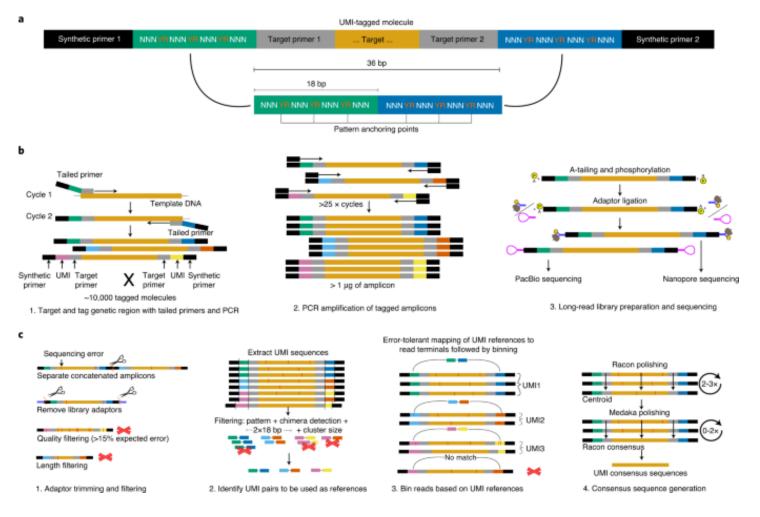
Start with high-quality


double stranded DNA

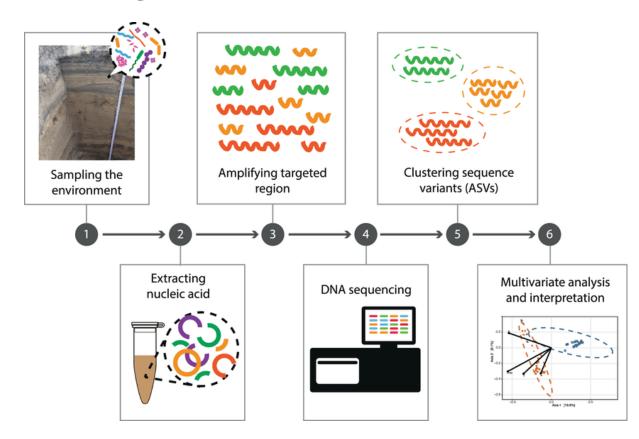
Ligate SMRTbell adapters and size select

Anneal primers and

bind DNA polymerase


(CCS)

HiFi READ (>99% accuracy)


Molecule-level correction

Specialized library preparation with e.g., UMI

https://www.nature.com/articles/s41592-020-01041-y

Clustering-based correction

Metagenomics: microbes in uneven abundance UMI -> different template (including the phylogenetically same one)

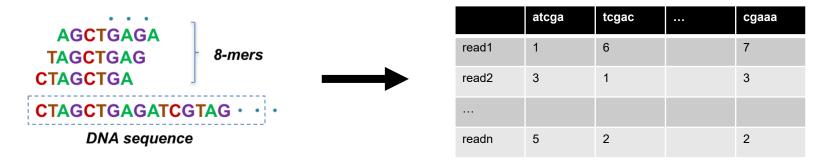
20/08/2023 8

Clustering-based correction

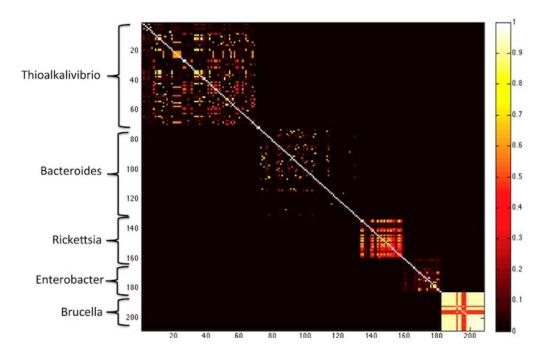
Troubles with long-read alignment

Pairwise alignment

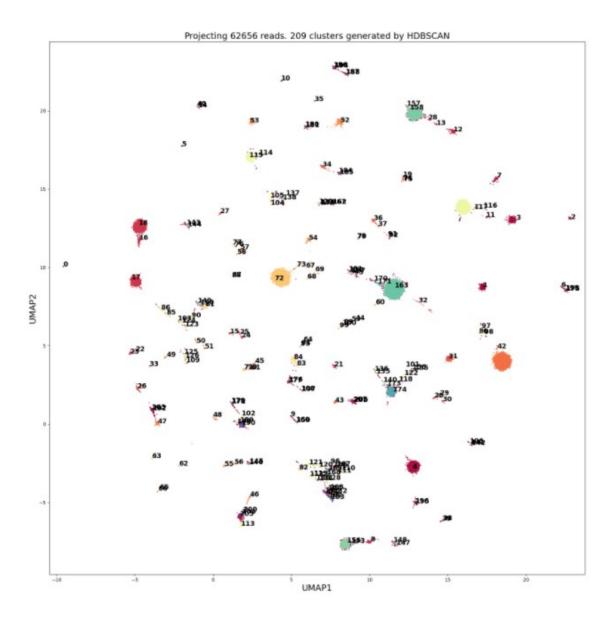
Time complexity

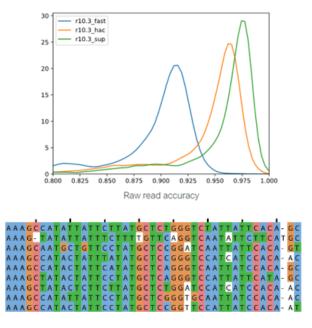

O(C(n,2)/2)=O(n!(n-1)!/2)

For amplicons, n can be millions if reads are pooled.


Noisy alignment with long reads

The relatively high error rate in relatively long reads


K-mers binning



- Computers prefer k-mers than text: blast, binning
- Unique k-mer patterns between genomes

Pre-cluster: Use 5-kmer profiles to bin ONT reads

	atcga	tcgac	 cgaaa
read1	1	10	3
read2	1	10	4
readn	1	10	3

Take **blast** result as an example

Raw reads within the cluster

Raw read

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
✓	Limosilactobacillus fermentum strain 9-4 chromosome, complete genome	Limosilacto	1827	9070	99%	0.0	90.92%	2085632	<u>CP076082.1</u>
✓	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1823	9096	99%	0.0	90.86%	2101878	<u>CP050919.1</u>
✓	Limosilactobacillus fermentum strain AGR1487 chromosome, complete genome	Limosilacto	1823	9113	99%	0.0	90.86%	1939032	<u>CP047585.1</u>
✓	Limosilactobacillus fermentum strain USM 8633 chromosome, complete geno	Limosilacto	1823	9085	99%	0.0	90.86%	2238401	<u>CP045034.1</u>
✓	Lactobacillus fermentum strain SL1-1 16S ribosomal RNA gene, partial seque	Limosilacto	1823	1823	99%	0.0	90.86%	1513	<u>MN435796.1</u>
✓	Lactobacillus fermentum strain IITKGP-BT13 16S ribosomal RNA gene, parti	Limosilacto	1823	1823	99%	0.0	90.86%	1513	<u>MN267492.1</u>
✓	Lactobacillus fermentum strain BioE LF11 16S ribosomal RNA gene, partial s	Limosilacto	1823	1823	99%	0.0	90.86%	1512	<u>MK779053.1</u>
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
✓	Limosilactobacillus fermentum strain B1 28 chromosome	Limosilacto	1884	9126	100%	0.0	89.82%	1905587	<u>CP039750.1</u>
✓	Limosilactobacillus fermentum strain HBUAS54312 16S ribosomal RNA gene,	Limosilacto	1823	1823	99%	0.0	89.22%	1498	<u>MH817761.1</u>
✓	Limosilactobacillus fermentum strain HBUAS62516 16S ribosomal RNA gene,	Limosilacto	1823	1823	99%	0.0	89.22%	1498	<u>ON005289.1</u>
✓	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1820	9039	100%	0.0	89.16%	2101878	<u>CP050919.1</u>
✓	Limosilactobacillus fermentum 3872 chromosome, complete genome	Limosilacto	1820	9033	100%	0.0	89.16%	2297851	<u>CP011536.1</u>
	Limosilactobacillus fermentum strain ACA-DC 179 chromosome, complete ge	Limosilacto	1820	9022	100%	0.0	89.16%	2149913	<u>CP082359.1</u>

Denoised consensus

Polished consensus

Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
Limosilactobacillus fermentum strain AGR1485 chromosome	Limosila	2728	13615	100%	0.0	100.00%	2226862	<u>CP047584.1</u>
Lactobacillus fermentum strain shebah-101 16S ribosomal R	Limosila	2728	2728	100%	0.0	100.00%	1494	MN625236.1
Lactobacillus fermentum strain HB 16S ribosomal RNA gene	Limosila	2728	2728	100%	0.0	100.00%	1509	<u>MN589591.1</u>
Lactobacillus fermentum strain SL5-1 16S ribosomal RNA ge	Limosila	2728	2728	100%	0.0	100.00%	1513	<u>MN435802.1</u>
Limosilactobacillus fermentum strain B1 28 chromosome	Limosila	2728	13574	100%	0.0	100.00%	1905587	<u>CP039750.1</u>
Limosilactobacillus fermentum strain HDB1096 16S ribosom	Limosila	2728	2728	100%	0.0	100.00%	1492	<u>MK537375.1</u>
Lactobacillus fermentum strain LF 16S ribosomal RNA gene,	Limosila	2728	2728	100%	0.0	100.00%	1564	<u>MK245999.1</u>
Lactobacillus fermentum strain LMEM36 16S ribosomal RNA	Limosila	2728	2728	100%	0.0	100.00%	1545	MK239985.1
Lactobacillus fermentum strain LMEM19 16S ribosomal RNA	Limosila	2728	2728	100%	0.0	100.00%	1529	MK239955.1
Lactobacillus fermentum strain S1 16S ribosomal RNA gene,	Limosila	2728	2728	100%	0.0	100.00%	1531	<u>MK226442.1</u>
Limosilactobacillus fermentum strain MTCC 5898 chromosome	Limosila	2728	13600	100%	0.0	100.00%	2098685	<u>CP035904.1</u>
Lactobacillus fermentum strain LMEM 5 16S ribosomal RNA	Limosila	2728	2728	100%	0.0	100.00%	1528	<u>MK418591.1</u>
Lactobacillus fermentum strain LMEM 37 16S ribosomal RN	Limosila	2728	2728	100%	0.0	100.00%	1557	<u>MK418588.1</u>
Limosilactobacillus fermentum strain LDTM 7301 chromoso	Limosila	2728	13593	100%	0.0	100.00%	2046196	<u>CP031195.1</u>
Lactobacillus fermentum strain PRS1 16S ribosomal RNA ge	Limosila	2728	2728	100%	0.0	100.00%	1515	<u>MH472943.1</u>

De novo OTU picking from long amplicons with LACA

UNIVERSITY OF COPENHAGEN

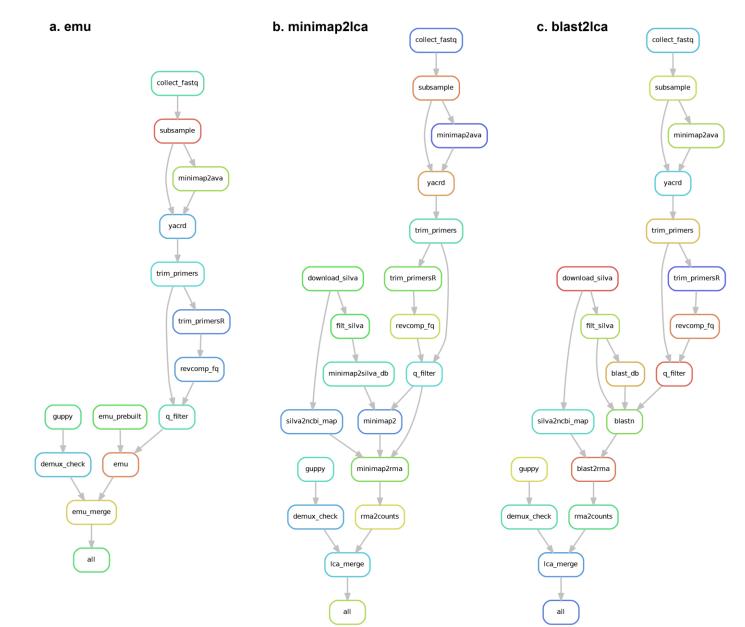
LACA: an automatic workflow for Long Amplicon Consensus Analysis

Github: <u>https://github.com/yanhui09/laca</u>

Example

Use **NART** for long amplicon profiling by read classification

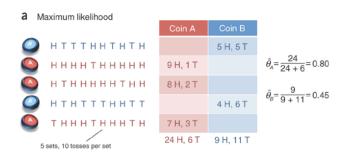
UNIVERSITY OF COPENHAGEN


NART: A tool for Nanopore Amplicon Real-Time analysis

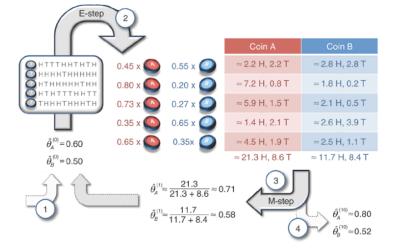
- Github: <u>https://github.com/yanhui09/nart</u>
- Demo video:

https://www.youtube.com/watch?v=TkdJGLOsc Pg

Directed Acyclic Graph (DAG)

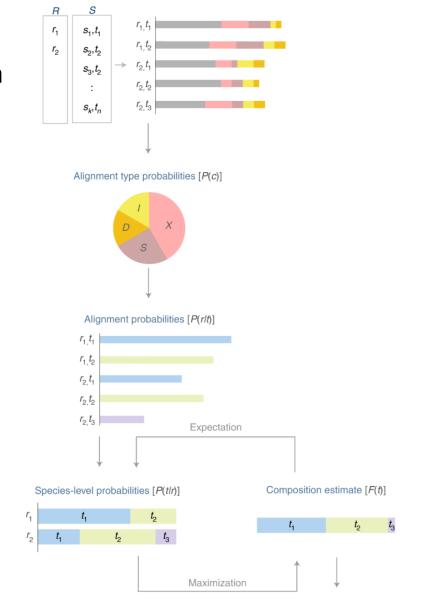


Limosilactobacillus fermentum


Raw read

	Description	Scientific Name	Max Score	Total Score	Query Cover	E value ▼	Per. Ident	Acc. Len	Accession
✓	Limosilactobacillus fermentum strain 9-4 chromosome, complete genome	Limosilacto	1827	9070	99%	0.0	90.92%	2085632	<u>CP076082.1</u>
✓	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1823	9096	99%	0.0	90.86%	2101878	<u>CP050919.1</u>
✓	Limosilactobacillus fermentum strain AGR1487 chromosome, complete genome	<u>Elimosilacto</u>	1823	9113	99%	0.0	90.86%	1939032	<u>CP047585.1</u>
✓	Limosilactobacillus fermentum strain USM 8633 chromosome, complete geno	. <u>Limosilacto</u>	1823	9085	99%	0.0	90.86%	2238401	<u>CP045034.1</u>
✓	Lactobacillus fermentum strain SL1-1 16S ribosomal RNA gene, partial seque	. <u>Limosilacto</u>	1823	1823	99%	0.0	90.86%	1513	<u>MN435796.1</u>
✓	Lactobacillus fermentum strain IITKGP-BT13 16S ribosomal RNA gene, parti	Limosilacto	1823	1823	99%	0.0	90.86%	1513	<u>MN267492.1</u>
✓	Lactobacillus fermentum strain BioE LF11 16S ribosomal RNA gene, partial s	Limosilacto	1823	1823	99%	0.0	90.86%	1512	<u>MK779053.1</u>
	Description	Scientific Name	Max Score	Total Score	Query Cover	E value T	Per. Ident	Acc. Len	Accession
✓	Limosilactobacillus fermentum strain B1 28 chromosome	Limosilacto	1884	9126	100%	0.0	89.82%	1905587	<u>CP039750.1</u>
✓	Limosilactobacillus fermentum strain HBUAS54312 16S ribosomal RNA gene,	. <u>Limosilacto</u>	1823	1823	99%	0.0	89.22%	1498	<u>MH817761.1</u>
✓	Limosilactobacillus fermentum strain HBUAS62516 16S ribosomal RNA gene,	. <u>Limosilacto</u>	1823	1823	99%	0.0	89.22%	1498	<u>ON005289.1</u>
✓	Limosilactobacillus fermentum strain HFD1 chromosome, complete genome	Limosilacto	1820	9039	100%	0.0	89.16%	2101878	<u>CP050919.1</u>
✓	Limosilactobacillus fermentum 3872 chromosome, complete genome	Limosilacto	1820	9033	100%	0.0	89.16%	2297851	<u>CP011536.1</u>
✓	Limosilactobacillus fermentum strain ACA-DC 179 chromosome, complete ge	Limosilacto	1820	9022	100%	0.0	89.16%	2149913	<u>CP082359.1</u>

Emu: Species-level abundance estimation through an expectation–maximization algorithm



b Expectation maximization

https://www.nature.com/articles/nbt1406 https://www.nature.com/articles/s41592-022-01520-4

Trim noise and output the result

t₂

nart &nawf

NART is composed of two sets of scripts: nart and nawf, which controls real-time analysis and workflow performance, respectively.

Usage: nart [OPTIONS] COMMAND [ARGS]...

NART: A tool for Nanopore Amplicon Real-Time (NART) analysis. To follow updates and report issues, see: https://github.com/yanhui09/nart.

Options:

-v, --version Show the version and exit. -h, --help Show this message and exit.

Commands:

monitor Start NART to monitor a directory.
run Start NART workflow.
visual Start NART app to interactively visualize the results.

Usage: nawf [OPTIONS] COMMAND [ARGS]...

NAWF: A sub-tool to run Nanopore Amplicon WorkFlow. The workflow command initiates the NAWF in a single batch, using either a fastq file from one ONT run or a fastq file generated during sequencing. To follow updates and report issues, see: https://github.com/yanhui09/nart.

Options:

-v, --version Show the version and exit. -h, --help Show this message and exit.

Commands:

config Generate the workflow config file. run Start workflow in a single batch.

Usage

Amplicon analysis in single batch

nawf can be used to profile any single basecalled fastq file from a Nanopore run or batch.

nawf config -b /path/to/basecall_fastq -d /path/to/database
nawf run all

init config file and check
start analysis

Real-time analysis

nart provide utils to record, process and profile the continuously generated fastq batch.

Before starting real-time analysis, you need nawf to configure the workflow according to your needs.

nawf config -d /path/to/database	# init config file and check	Q
----------------------------------	------------------------------	---

In common cases, you need three independent sessions to handle monitor, process and visulization, repectively.

1. Minitor the bascall output and record

nart monitor -q /path/to/basecall_fastq_dir
monitor basecall output

2. Start amplicon analysis for new fastq

nart run -t 10

real-time process in batches

3. Update the feature table for interactively visualize in the browser

interactive visualization

D

RT-philosophy

ONT sequencing and basecalling in batches

- nart monitor => fqs.txt (record fastq files)
- nart run => nawf (start the workflow in batches & update the feature table)
- nart visual => interactively visualize profiles.

Exercises

UNIVERSITY OF COPENHAGEN

 MAC2023: <u>https://yanhui09.github.io/MAC2023/</u>

Cross-platform support, incl. MacOS

Linux/amd64 platform

Thanks